Electrically Conductive Porous Metal-Organic Frameworks.

نویسندگان

  • Lei Sun
  • Michael G Campbell
  • Mircea Dincă
چکیده

Owing to their outstanding structural, chemical, and functional diversity, metal-organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy-related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices

In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries

Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanc...

متن کامل

Measuring and Reporting Electrical Conductivity in Metal-Organic Frameworks: Cd2(TTFTB) as a Case Study.

Electrically conductive metal-organic frameworks (MOFs) are emerging as a subclass of porous materials that can have a transformative effect on electronic and renewable energy devices. Systematic advances in these materials depend critically on the accurate and reproducible characterization of their electrical properties. This is made difficult by the numerous techniques available for electrica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 55 11  شماره 

صفحات  -

تاریخ انتشار 2016